DRAW AND CALCULATE LIKE AN ARCHITECT (ALL AGES)

Ages 4 to 7 (Level 1)

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learners use body parts in scale drawing of floor plans and calculate area using simple counting methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leading question:</td>
<td>How can you draw floor plan sketches and calculate areas using your body parts as measuring tools?</td>
</tr>
<tr>
<td>Age group:</td>
<td>4-7-year-old</td>
</tr>
<tr>
<td>Subjects:</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Total time required:</td>
<td>~6 hours over 4 days</td>
</tr>
<tr>
<td>Self-guided / Supervised activity:</td>
<td>Medium to High supervision required</td>
</tr>
<tr>
<td>Resources required:</td>
<td>Paper and pencil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Activity and Description</th>
</tr>
</thead>
</table>
| 1 | 20 minutes | Parent Introduction: In this project, we will learn how an Architect draws floor plans, and what methods they use to calculate the size of rooms or houses. Let’s start by measuring the floor dimensions of this room.
As you may know from a previous project, in ancient times people used their body parts to measure lengths. |
For this project you will use mainly your Foot, and your Digit which is the width of your finger. Of course, you know that your foot size is smaller than the actual Foot unit used on measuring tapes (as different people have different foot sizes!)

- Pick one of the house rooms with a rectangular floor shape, preferably the smallest room in the house.
- Stand on one corner of the room, and walk by the wall, step by step, to reach the other corner.
- You must start with the back of your foot touching the wall behind, and then place the other foot right in front of and touching the other foot, and keep counting your steps until you reach the facing wall.

- Repeat with the 4 sides of the room, and write down the measures in a table like the one below

<table>
<thead>
<tr>
<th>Room side 1</th>
<th>Room side 2</th>
<th>Room side 3</th>
<th>Room side 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is any of the sides equal in length to another side? Does this apply to all rectangles?

EAA welcomes feedback on its projects in order to improve, please use this link:
https://forms.gle/LGAP9k17fMyJrKJN7
In a rectangle, usually the measure of the longer side is called length (L); and the measure of the shorter side is called width (W).

On a piece of paper, you will draw a sketch of the room. The room is much bigger than the sheet of paper, so architects usually draw a smaller sketch that looks like the actual room but smaller (something like a photograph of you compared to the real size of you). See below how to do it:

To do this, instead of using your Foot to draw the sides of the rectangle, you use your finger: Digit.

In the example below, see a sketch of a room whose Length L = 8 feet, and width W = 5 feet. The actual size of the sketch is 8 Digits by 5 Digits.

As you also notice, we do not need to write the sizes of the other sides, as in a rectangle opposite sides are equal in size.

Now draw the sketch of the room on a sheet of paper.
On your sketch, create a grid using the Digit marks, as shown below:

Count the number of squares in your diagram.
Notice that the side length of the small square is 1 digit, so we call it a unit square.

The number of squares inside the sketch is called the **Area** of the sketch. **Area** is the size of the floor surface inside a certain shape, which is the count of unit squares enclosed within.
In the example above, we saw that the sketch has 40 unit squares within, so its area is 40 **squared Digits**, and we conclude that the area of the room is 40 **Squared Feet**.

- What is the area of your sketch? (in squared Digits)

What is the area of your room? (In Squared Feet*)

*Foot measure used here is the Learner’s foot size and not the universal Foot scale.

Try to answer the questions on the Day 1 Worksheet (rectangle area problems)
Notice that a square is a special rectangle where its Length = Width

Yesterday you tried to draw floor plans of a room, and to use a smaller scale to represent a large drawing on a small piece of paper. Also you learned how to find the area of rectangular room.
In fact, area can be calculated simply by multiplying Length X Width.
For example: in the example of the room whose Length is 8 Feet and Width is 5 Feet, the area counted was 40 Squared feet. This could have been found by multiplying 8X5 = 40.
Try a more easy, what is the area of the below rectangle?
It is 6, which is equal to $3 \times 2 = L \times W$

- Try multiplying: The Length of your room \times its Width, is it equal to the area you counted?

So now we learned another way to solve multiplication questions!

To find out the answer for 2×8, you can draw a rectangle with $L = 8$ and $W = 2$, and count the squares:

Another way of solving for 8×2 is by adding $8 + 8$ (Keep 8 in our head, and then continue counting 8 places: 9, 10, 11, 12, 13, 14, 15, 16)

8×3 is by adding $8 + 8 + 8$ (8 in the head, count 8 more places, then 8 more places)

Solve Question 1 of the Day 2 Worksheet without using a calculator

Another important thing that architects need to know is the Perimeter of the room. This tells us how long of a fence or walls are needed to put around any shape. This is calculated by adding all the measures of the sides of the shape.

Looking at the above shape, the perimeter $= 8 + 2 + 8 + 2 = 20$ units of length.

Calculate the perimeter of the square whose side is 5 Feet without using a calculator.
<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 minutes</td>
<td>Individual activity: solve the Day 2 Worksheet questions 2, 3, 4 and 5 without using a calculator. Criteria: Questions are answered correctly using the skills learned in this project. Discuss your solutions with a parent.</td>
</tr>
<tr>
<td>5 minutes</td>
<td>Today you will draw a sketch of the house floor map using a Digit to represent 1Foot. When doing this, Architects imagine that the roof of the house is transparent, and we draw the map as if we are looking at the house from the top like a flying bird. As an example, below is a simple floor map.</td>
</tr>
</tbody>
</table>

As an example, below is a simple floor map.

Source: https://www.tuko.co.ke/276066-3-bedroom-house-plans-designs-kenya.html

Notice that:
- The walls are drawn on the map
- There are some arcs to represent doors
- The function of each room is marked (bedroom, kitchen, bathroom...)

Not all measures are marked, so better you add that to your map.
<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 min</td>
<td>Learner draws a floor map of the house and then presents it to the family. Criteria:</td>
</tr>
<tr>
<td></td>
<td>- The floor map is up to scale (each 1 Foot of actual measure is represented by 1 Digit)</td>
</tr>
<tr>
<td></td>
<td>- The map accurately represents the actual rooms of the house</td>
</tr>
<tr>
<td></td>
<td>- The name of each room or space is written on the map (like: bathroom, kitchen...etc.)</td>
</tr>
<tr>
<td>10 min</td>
<td>Learners present the floor map to the parents</td>
</tr>
<tr>
<td>10 min</td>
<td>Learners calculate without using a calculator the overall area of the house using the floor map: this is done by adding the areas of the different rooms or spaces inside the house.</td>
</tr>
<tr>
<td>30 min</td>
<td>Learners will play a treasure hunt game with the family. Learners will hide 3 items around the house and will mark where they hid them on the floor map. They will ask 3 family members to find one of the hidden items each. If it were too easy, they can make it harder by hiding smaller items, and giving an approximate location.</td>
</tr>
<tr>
<td>30 min</td>
<td>Learners will explore how we could help people navigate using verbal instructions. Learners will imagine how they would help a blind person who could not see the map. They will blindfold one of their family members and give them directions to go from one location to another in the house using the following verbal directions only:</td>
</tr>
<tr>
<td></td>
<td>o Move (a number of) steps forward</td>
</tr>
<tr>
<td></td>
<td>o Turn to the left</td>
</tr>
<tr>
<td></td>
<td>o Turn to the right</td>
</tr>
<tr>
<td>10 min</td>
<td>For discussion:</td>
</tr>
<tr>
<td></td>
<td>- How good your directions were to guide the blindfolded member? Did you have to correct any of the directions you gave? Why?</td>
</tr>
<tr>
<td></td>
<td>- How do you think boats navigate their way in the sea without using technology?</td>
</tr>
<tr>
<td></td>
<td>- Imagine ways to help sailors navigate in the oceans when they are unable to see land. Hint: Learners can be prompted to look out into the sky and imagine the north star (the brightest star in the sky) and the direction that the sun rises (east) and sets (west).</td>
</tr>
</tbody>
</table>

EAA welcomes feedback on its projects in order to improve, please use this link: https://forms.gle/LGAP9k17fMyJrKJN7
<table>
<thead>
<tr>
<th></th>
<th>Reflection questions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 minutes</td>
<td>What did you like the most about this project?</td>
</tr>
<tr>
<td></td>
<td>Using what you have learned in this project, what floor maps would you like to draw?</td>
</tr>
<tr>
<td></td>
<td>(probing: playground, your school, another house, ...etc)</td>
</tr>
<tr>
<td></td>
<td>If you were the architect to design this house, what would you change while keeping</td>
</tr>
<tr>
<td></td>
<td>the same total area of the house?</td>
</tr>
</tbody>
</table>

Assessment Criteria:
- The house floor map is accurate and clear
- Worksheet questions are answered correctly using methods and skills introduced in earlier activities
- Learners are engaged and show grit while working on project tasks
- Learners give good verbal instructions as directions

Learning outcomes:
- Practice scale drawing using simple conversion of Foot to Digit
- Find areas of rectangles by drawing unit squares and counting
- Use a geometric/visual method to solve multiplications
- Practice giving directions verbally
- Apply mathematical knowledge and skills in a real-life scenario

Required previous learning:
- Counting and simple addition.
 *It is preferred that learners do the “Beauty in Shapes and Measurements” project before this one.

Inspiration:

Additional enrichment activities:
Draw the floor map of another space (School, playground...)

Modifications to simplify the project tasks if need be
Simpler version of this project can be to learn how to draw floor mapping of a rectangular space using simple conversion of Foot to Digit and counting the unit squares enclosed to find the Area.
DAY 1 WORKSHEET

Answer the below questions without using a calculator

1. Draw a floor map of a room whose Length is 4 Feet, and Width is 5 Feet.
 Then find the area of this room in Squared Feet.

2. Draw a floor map of a room whose Length is 7 Feet, and Width is 7 Feet.
 Then find the area of this room in Squared Feet.

What do we call the rectangle whose Length is equal to its Width?

3. A rectangle has an area of 20 Squared Feet. Its Length is 5 Feet. What is its width?
 Hint: Keep building rows below until you reach a count of 20 squares. Then, you will find the Width!

4. A rectangle has an area of 36 Squared Feet. One of its sides measures 6 Feet, can you find the measure of the other side? (Hint: see how you sloved the previous question).
DAY 2 WORKSHEET

Answer the below questions **without using a calculator**

1. Find the answers to the following multiplication questions

 2 x 3 =

 2 x 7 =

 3 x 5 =

 2 x 9 =

 4 x 6 =

 3 x 3 =

 2 x 6 =

 3 x 8 =

2. Draw a sketch for a rectangle whose Length is 6 Digits, and width is 5 Digits.

Calculate the Perimeter and Area of this rectangle.
3. Draw a sketch for a rectangle whose Length is 7 Digits, and width is 6 Digits.

Calculate the Perimeter and Area of this rectangle.

4. Draw a sketch for a rectangle whose Length is 8 Digits, and width is 4 Digits.

Calculate the Perimeter and Area of this rectangle.
5. Find the area of the below shape by adding the areas of the two rectangles.

Ages 8 to 10 (Level 2)

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learners use body parts in scale drawing of floor plans and apply multiplications and divisions on area problems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leading question:</td>
<td>How can you draw floor plan sketches, calculate areas and the required building materials using only your body parts as measuring tools?</td>
</tr>
<tr>
<td>Age group:</td>
<td>8-10-year-old</td>
</tr>
<tr>
<td>Subjects:</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Total time required:</td>
<td>~ 6 hours over 4 days</td>
</tr>
<tr>
<td>Self-guided / Supervised activity:</td>
<td>Medium supervision required by an adult.</td>
</tr>
<tr>
<td>Resources required:</td>
<td>Paper and pencil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Activity and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 minutes</td>
<td>Parent Introduction: In this project, we will learn how an Architect draws floor plans, and what methods they use to calculate the size of rooms or houses. Let’s start by measuring the floor dimensions of this room. As you may know from a previous project, in ancient times people used their body parts to measure lengths.</td>
</tr>
</tbody>
</table>

EAA welcomes feedback on its projects in order to improve, please use this link: https://forms.gle/LGAP9k17fMyJrKJN7
For this project you will use mainly your Foot, and your Digit which is the width of your finger. Of course, you know that your foot size is smaller than the actual Foot unit used on measuring tapes (as different people have different foot sizes!)

- Pick one of the house rooms with a rectangular floor shape, preferably the smallest room in the house.
- Stand on one corner of the room, and walk by the wall, step by step, to reach the other corner.
- You must start with the back of your foot touching the wall behind, and then place the other foot right in front of and touching the other foot, and keep counting your steps until you reach the facing wall.

- Repeat with the 4 sides of the room, and write down the measures in a table like the one below

<table>
<thead>
<tr>
<th>Room side 1</th>
<th>Room side 2</th>
<th>Room side 3</th>
<th>Room side 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is any of the sides equal in length to another side? Does this apply to all rectangles?
In a rectangle, usually the measure of the longer side is called length \((L) \); and the measure of the shorter side is called width \((W) \).

On a piece of paper, you will draw a sketch of the room. The room is much bigger than the sheet of paper, so architects usually draw a smaller sketch that looks like the actual room but smaller (something like a photograph of you compared to the real size of you). See below how to do it:

To do this, instead of using your Foot to draw the sides of the rectangle, you use your finger: Digit.

In the example below, see a sketch of a room whose Length \(L = 8 \) feet, and width \(W = 5 \) feet. The actual size of the sketch is 8 Digits by 5 Digits.

As you also notice, we do not need to write the sizes of the other sides, as in a rectangle opposite sides are equal in size.

Now draw the sketch of the room on a sheet of paper.
On your sketch, create a grid using the Digit marks, as shown below:

Count the number of squares in your diagram. Notice that the side length of the small square is 1 digit, so we call it a unit square.

The number of squares inside the sketch is called the **Area** of the sketch. **Area** is the size of the floor surface inside a certain shape, which is the count of unit squares enclosed within.

In the example above, we saw that the sketch has 40 unit squares within, so its area is 40 **squared Digits**, and we conclude that the area of the room is 40 **Squared Feet**.

- What is the area of your sketch? (in squared Digits)

What is the area of your room? (In Squared Feet*)

- What is the area of your sketch? (in squared Digits)
- What is the actual area of your room? (In Squared Feet*)
- What is the Perimeter of your room?

*Foot measure used here is the Learner’s foot size and not the universal Foot scale.

In scale drawing, you can choose any scale you like and mention that on your drawing. For example, in some maps the scale can be 1:10'000, which is 1 centimetre represents 100 meters.

Try to answer the questions on the Day 1 Worksheet **without using a calculator**.

Criteria: Questions are answered correctly using the skills learned in this project

Show your answers and discuss them with one of your parents.
Today you will draw a sketch of the house floor map using a Digit to represent 2 Feet.
When doing this, Architects imagine that the roof of the house is transparent, and we draw the map as if we are looking at the house from the top like a flying bird.
As an example, below is a simple floor map.

![Simple Floor Map](https://www.tuko.co.ke/276066-3-bedroom-house-plans-designs-kenya.html)

Notice that:
- The walls are drawn on the map
- There are some arcs to represent doors
- The function of each room is marked (bedroom, kitchen, bathroom...)

Not all measures are marked, so better you add that to your map.

Learner draws a floor map of the house up to the scale 2 feet : 1 digit ; and then presents it to the family.
Criteria:
- The floor map is up to scale (every 2 Feet of actual measure are represented by 1 Digit)
- The map accurately represents the actual rooms of the house
- The name of each room or space is written on the map (like: bathroom, kitchen...etc.)

Learners present the floor map to the parents

Without using a calculator
Learner calculates the overall area of the house using the floor map (by adding the areas of the different rooms or spaces inside the house)
- Learner calculates the Perimeter of the house

Present answers to one of the parents

Criteria:
- Followed the methods used in this lesson, or logically deducted an own method
- The answers are correct

Division: It is like distribution, so dividing 6÷3 is like distributing 6 candies on 3 children, how many candies will each child have?

Make 3 bags, one for each child:

Then start by giving every child 1 candy, and repeat again until you run out of candies:

The answer is 2 candies for every child. If you notice, division is about giving an equal share to everybody.

Try distributing 15 candies to 3 children, how many will each get?

(The learner to figure out. Answer is 5)

Example: Distribute 7 pizzas on 3 families. How many will each family get?
7÷3= \textbf{2} Pizzas per family, with a remainder of \textbf{1} Pizza

Another way of solving this, is to actually cut the remaining pizza and distribute it evenly on the three families. So, 1 pizza cut into 3 equal shares will result in a fraction that is $\frac{1}{3}$.

This way, the answer is written as $2 \frac{1}{3}$ because each family got 2 whole pizzas and one third of a pizza.

Solve the Day 3 Worksheet Question 1 \textbf{without using a calculator}.

Architects use the different measurements of the house to calculate the material needed to complete the house construction. For example: using the area, they can calculate how many tiles they need to cover the floor. For example:

A room of L 7m and W 5m, is to be covered by square tiles of S= 0.5; how many tiles are required?
If you notice on the sketch above, each unit square will take 4 tiles of side 0.5. So, the number of tiles can be calculated in 2 steps:

- First calculating the room Area = 7 x 5 = 35 squared m.
- Then multiplying the area by 4, 35 x 4 = 140 tiles.

Another Method

- First calculating the room Area = 7 x 5 = 35 squared m.
- Then calculating the tile area = 0.5 x 0.5 = 0.25
- Then dividing the Area of the room by the area of the tile: 35 ÷ 0.25
 As you know 0.25 is $\frac{25}{100}$

 $35 \div 0.25 = 35 \div \frac{25}{100} = 35 \times \frac{100}{25} = 35 \times 4 = 140$ tiles.

As you see above, we solved a division problem using multiplication.

Now it is your turn to calculate without using a calculator: if you were to change the tiles in your house with square tiles of side 0.5 foot, how many tiles would you need?

Show your solution and answer to one of the parents.

Criteria:
- The method is correct with logical steps
- The answer is correct

Solve Questions 2 and 3 on the Day 3 Worksheet without using a calculator, and show your work and answers to one of your parents.

Learners will play a treasure hunt game with the family.
<table>
<thead>
<tr>
<th>30 minutes</th>
<th>Learners will hide 3 items around the house and will mark where they hid them on the floor map. They will ask 3 family members to find one of the hidden items each. If it were too easy, they can make it harder by hiding smaller items, and giving an approximate location. Learners will explore how we could help people navigate using verbal instructions. Learners will imagine how they would help a blind person who could not see the map. They will blindfold one of their family members and give them directions to go from one location to another in the house using the following verbal directions only: - Move (a number of) steps forward - Turn to the left - Turn to the right For discussion: - How good your directions were to guide the blindfolded member? Did you have to correct any of the directions you gave? Why? - How do you think boats navigate their way in the sea without using technology? - Imagine ways to help sailors navigate in the oceans when they are unable to see land. Hint: Learners can be prompted to look out into the sky and imagine the north star (the brightest star in the sky) and the direction that the sun rises (east) and sets (west).</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 minutes</td>
<td>Reflection questions: What did you like the most about this project? Using what you have learned in this project, what floor maps would you like to draw? (probing: playground, your school, another house, ...etc) If you were the architect to design this house, what would you change while keeping the same total area of the house?</td>
</tr>
<tr>
<td>10 minutes</td>
<td>Assessment Criteria: - The house floor map is accurate and clear - Worksheet questions are answered correctly using methods and skills introduced in earlier activities - Learners are engaged and show grit while working on project tasks - Learners give good verbal instructions as directions</td>
</tr>
</tbody>
</table>

Learning outcomes: - Practice scale drawing using simple conversions

EAA welcomes feedback on its projects in order to improve, please use this link: https://forms.gle/LGAP9k17fMyrJrKJ7
<table>
<thead>
<tr>
<th>Required previous learning:</th>
<th>- Basics of multiplication and division</th>
</tr>
</thead>
</table>
| Inspiration: | -
| Additional enrichment activities: | Draw the floor map of another space (School, playground...) and calculate how many tiles will it require. |
| Modifications to simplify the project tasks if need be | Simpler version of this project can be to learn how to draw floor mapping of a rectangular space using simple conversion of Foot to Digit and counting the unit squares enclosed to find the Area. |

- use multiplication to find areas of rectangles
- Practice divisions and apply it on word problems.
- Practice giving directions verbally
- Apply mathematical knowledge and skills in a real-life scenario
Day 1 Worksheet

Answer the below questions without using a calculator

1. Draw a floor map of a room whose Length is 14 Feet, and Width is 12 Feet, using the scale 2 Foot is represented by 1 Digit

Then find the area of this room in Squared Feet.

2. A rectangle has an area of 20 Squared Feet. Its Length is 5 Feet. What is its width? Hint: use the formula $A = L \times W$, $20 = 5 \times ?$

3. A rectangle has an area of 35 Squared Feet. One of its sides measures 5 Feet, can you find the measure of the other side?

4. Find the Area and Perimeter of the house in the sketch below. Each unit on the sketch represents 1 meter.

EAA welcomes feedback on its projects in order to improve, please use this link:
https://forms.gle/LGAP9k17fMyJrKJN7
Day 3 Worksheet

Answer the below questions without using a calculator

1. Find the answer to the below division problems.

\[
\begin{align*}
9 \div 3 &= _ \\
18 \div 3 &= _ \\
18 \div 6 &= _ \\
12 \div 2 &= _ \\
13 \div 2 &= _ \\
24 \div 3 &= _ \\
25 \div 3 &= _ \\
11 \div 5 &= _ \\
23 \div 5 &= _ \\
17 \div 4 &= _ \\
23 \div 6 &= _ \\
31 \div 5 &= _ \\
19 \div 2 &= _ \\
14 \div 3 &= _ \\
29 \div 6 &= _
\end{align*}
\]

2. The perimeter of a rectangular room is 20 m. Its Width is 4 m, what is its Length?

3. A rectangular room is 12m by 7m. How many square tiles of side 0.5 m are required to cover the floor?

EAA welcomes feedback on its projects in order to improve, please use this link:
https://forms.gle/LGAP9k17fMyJrKJN7
Ages 11 to 14 (Level 3)

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learners use body parts in scale drawing of floor plans and apply arithmetic operations to identify construction requirements.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leading question:</td>
<td>How can you draw floor plan sketches, calculate areas and the required building materials using only your body parts as measuring tools?</td>
</tr>
<tr>
<td>Age group:</td>
<td>11-14-year-old</td>
</tr>
<tr>
<td>Subjects:</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Total time required:</td>
<td>~6 hours over 4 days</td>
</tr>
<tr>
<td>Self-guided / Supervised activity:</td>
<td>Medium supervision by an adult</td>
</tr>
<tr>
<td>Resources required:</td>
<td>Paper and pencil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Activity and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15 minutes</td>
<td>Parent Introduction: In this project, we will learn how architects draw floor plans, and what methods they use to calculate the size of rooms or houses. Let’s start by measuring the floor dimensions of this room. As you may know from a previous project, in ancient times people used their body parts to measure lengths.</td>
</tr>
</tbody>
</table>

EAA welcomes feedback on its projects in order to improve, please use this link: https://forms.gle/LGAP9k17fMyJrKJN7
For this project you will use mainly your Foot, and your Digit which is the width of your finger. Of course, you know that your foot size is smaller than the actual Foot unit used on measuring tapes (as different people have different foot sizes!)

- Pick one of the house rooms with a rectangular floor shape, preferably the smallest room in the house.
- Stand on one corner of the room, and walk by the wall, step by step, to reach the other corner.
- You must start with the back of your foot touching the wall behind, and then place the other foot right in front of and touching the other foot and keep counting your steps until you reach the facing wall.

- Repeat with the 4 sides of the room, and write down the measures in a table like the one below

<table>
<thead>
<tr>
<th>Room side 1</th>
<th>Room side 2</th>
<th>Room side 3</th>
<th>Room side 4</th>
</tr>
</thead>
</table>

Is any of the sides equal in length to another side? Does this apply to all Rectangles?

In a rectangle, usually the measure of the longer side is called length (L); and the measure of the shorter side is called width (W).

On a piece of paper, you will draw a sketch of the room. The room is much bigger than the sheet of paper, so architects usually draw a smaller sketch that looks like the actual room but smaller (something like how a photo of you looks exactly like you but smaller in size). See below how to do it:

To do this, instead of using your Foot to draw the sides of the rectangle, you can use a smaller measure, like your finger: Digit.
In the example below, see a sketch of a room whose Length L = 8 feet, and width W = 5 feet. The actual size of the sketch is 8 Digits by 5 Digits.

As you also notice, we don’t need to write the sizes of the other sides, as in a rectangle opposite sides are equal in size.

Now draw the sketch of the room on a sheet of paper.

On your sketch, create a grid using the Digit marks, as shown below:
Count the number of squares in your diagram.

The number of squares inside the sketch is called the **Area** of the sketch. **Area** is the size of the floor surface inside a certain shape, which is the count of unit squares enclosed within. The Area of a rectangle = Length x Width
So, if you know the length and width of a rectangle, you just multiply to get the Area without needing to sketch the diagram.

In the example above, we saw that the sketch has 40 unit squares within, so its area is 40 **squared Digits**, and we conclude that the area of the room is 40 **Squared Feet**.

Perimeter is the sum of all its sides. Perimeter is used to figure out the length of walls or fence needed to be put around the whole floor map. In the above room, the Perimeter= 8 + 5 + 8 + 5 = 26 Feet.

Now look at your room and sketch, and find the below **without using a calculator**:
- What is the area of your sketch? (in squared Digits)
- What is the actual area of your room? (In Squared feet*)
- What is the Perimeter of your room? (In feet)

*Foot measure used here is the Learner’s foot size and not the universal Foot scale.

In scale drawing, you can choose any scale you like and mention that on your drawing. For example, in some maps the scale can be 1:10’000, which means that 1 cm on the drawing represents 10’000 cm = 100 meters in reality.

Try to answer the questions on the Day 1 Worksheet **without using a calculator**.

Criteria: Questions are answered correctly using the skills learned in this project

Show your answers and discuss them with one of your parents.
(Answer Key for Question 4: Area = 18.55 m², and Perimeter = 22.2 m; For Question 5: The Actual Area is 1500 m²).

Today you will draw a sketch of the house floor map using a Digit to represent 2 Feet.
When doing this, Architects imagine that the roof of the house is transparent, and we draw the map as if we are looking at the house from the top like a flying bird.
As an example, below is a simple floor map.
Notice that:
- The walls are drawn on the map
- There are some arcs to represent doors
- The function of each room is marked (bedroom, kitchen, bathroom…)

Not all measures are marked, so better you add that to your map.

Learner draws a floor map of the house up to the scale 5 feet : 1 digit; and then presents it to the family.

Criteria:
- The floor map is up to scale (every 5 Feet of actual measure are represented by 1 Digit)
- The map accurately represents the actual rooms of the house
- The name of each room or space is written on the map (like: bathroom, kitchen...etc.)

Learners present the floor map to the parents

Learner add the areas of the various rooms and internal parts of the house to find out the total livable area of the house.

Pay attention that if your scale is 5 feet : 1 digit, then each unit square on the sketch of dimensions 1 digit by 1 digit represents a square of 5 feet by 5 feet. 1 squared digit on the sketch represents 25 squared feet in reality.

Learner calculate the Perimeter of the house using their floor map without using a calculator

Learners present answers to one of the parents.

Criteria:

EAA welcomes feedback on its projects in order to improve, please use this link:
https://forms.gle/LGAP9k17fMyJrKJN7
Do you think if you measured the dimensions of the house from the outside, there will be any difference from the measurements you made on the inside? Learners answer and explain.

In fact, the overall house area includes the area occupied by walls, which is usually overlooked when just adding the inside areas of the rooms. Let’s try to calculate or estimate how much area do internal walls actually take, which is the space they take of the floor map because of their thickness.

Try to measure the thickness of one of the internal walls of the house by placing your foot next to the wall against the internal thickness part as shown in the photo below:

The wall thickness is around 4/5 or 0.8 Foot, so in the example below, you can see that there are 8 internal walls (we do not count the external walls if all our measurements were done inside the house). Let’s say we measured the lengths of all internal walls and it was 50 feet. Hence, the area that the internal walls occupy is equal to 50 x 0.8 = 40 squared feet!

Therefore, the actual internal Area of the house is: internal Area of rooms + Area of walls. In the example below, assume the sum of all room areas is 650 Sq. Ft, we must add to it 40 Sq. Ft to count the area of internal walls, hence the internal area of the house is 690 Sq. Ft, out of which the liveable area is 650 Sq. Ft.

In this case the livable area is 94% of the total internal area:

$$\frac{650}{650+40} \times 100$$
Without using a calculator, do the following:
- Calculate the areas of the internal walls of the house.
- Add this to the livable area to find out the Total Internal area of the house.
- What percentage is the Livable Area out of the Total Internal Area?

If we measure the house dimensions from outside, what do we need to subtract from it in order to find out the actual livable area?

Today we will make some calculations for the material that was required to construct our house.

After knowing the area, Architects can calculate how many tiles they need to cover the floor, and hence make the order.

For example:

A room of L 7m and W 5m, is to be covered by square tiles of S = 0.5; how many tiles are required?
If you notice on the sketch above, each unit square will take 4 tiles of side 0.5.
So, the number of tiles can be calculated in 2 steps:
- First calculating the room Area = 7 \times 5 = 35 \text{ m}^2.
- Then multiplying the area by 4, 35 \times 4 = 140 tiles.

Another Method
- First calculating the room’s internal Area = 7 \times 5 = 35 \text{ m}^2.
- Then calculating the tile area = 0.5 \times 0.5 = 0.25 \text{ m}^2
- Then dividing the Area of the room by the area of the tile: 35 \div 0.25
 As you know 0.25 is \frac{25}{100}
 35 \div 0.25 = 35 \div \frac{25}{100} = 35 \times \frac{100}{25} = 35 \times 4 = 140 tiles.

(As you see above, we solved a division problem using multiplication.)
For the cost of tiles, it is usually sold per square meter, for example if the tiles are
sold for 3$ per m2, then the tiles to cover the room in this example would cost:
35 \times 3 = $105.

Now it is your turn to calculate without using a calculator: if you were to change the
tiles in your house with small square tiles of side 0.5 foot, how many tiles would you
need?
And how much would that cost, if the tiles are sold at $0.3 per Sq foot?

Show your solution and answer to one of the parents.
Criteria:
- The method is correct with logical steps
- The answer is correct

Solve the Day 3 Worksheet and show your work and answers to one of your parents.

If we were to estimate the amount of paint required for the walls and ceiling of the
room, in the previous example, we need:
- The dimensions of the room: Length, Width and Height.
- The dimensions of any doors or windows
- We estimate that 1 L of wall paint covers 10 m2, or 100 Sq feet.
| 30 minutes | Let’s assume that we have a room of dimensions Length 7m, Width 5m, & Height 2.5 m. The room has 1 door and 1 window whose area adds up to 4 m². Find out how many L of paint it requires, if we apply 2 coats of paint, and what would that cost if the paint is for $3.5 per L.

To solve this problem, we follow the below steps:
- The total area that requires painting:
 - Ceiling: is same as floor L x W = 7 x 5 = 35 m²
 - Area of walls, after taking out the areas of doors and windows:
 o Wall 1: 7 m x 2.5 m
 o Wall 2: 5 m x 2.5 m
 o Wall 3: same as Wall 1
 o Wall 4: same as Wall 2
 o Area of walls = 2x(7x2.5) + 2x(5x2.5) – Area of doors and windows
 ● = 35 + 25 – 4 = 56 m²
 - To calculate the amount of paint required, we divide this area by the estimate of 10 m²/L:
 o 56 m² ÷ 10 m²/L = 5.6 L of paint for one Coat
 o For 2 coats we need 2 x 5.6 L = 11.2 L
 - The cost of that is 11.2 L x 3.5 $/L = 39.2 $

Now it is your turn to calculate **without using a calculator**: if you were to paint all the walls and ceiling of your house from the inside, how many liters of paint are required (for 2 coats)? And how much would that cost?
Assuming that 1 L of paint covers 100 Sq Ft for a single coat, and costs $3.5 per L.

Show your solution and answer to one of the parents.
Criteria:
- The method is correct with logical steps
- The answer is correct or reasonable

| 5 minutes | Learners will play a treasure hunt game with the family. Learners will hide 3 items around the house and will mark where they hid them on the floor map. They will ask 3 family members to find one of the hidden items each.

If it were too easy, they can make it harder by hiding smaller items, and giving an approximate location.

Learners will explore how we could help people navigate using verbal instructions.

| 20 minutes | EAA welcomes feedback on its projects in order to improve, please use this link:
https://forms.gle/LGAP9k17fMyJrKJN7 |
<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
</table>
| 30 min | Learners will imagine how they would help a blind person who could not see the map. They will blindfold one of their family members and give them directions to go from one location to another in the house using the following verbal directions only:
- Move (a number of) steps forward
- Turn to the left
- Turn to the right |
| 10 min | Learners hide an item somewhere in the house. They write down the verbal instructions that a person needs to get from a certain location, to where that thing is hidden.
Then they blindfold a family member and give the written instructions to another member to read it out loud for the blindfolded member to reach the location and find the hidden item.
Note: The learner must be aware that if the blindfolded person could not find the item, it is their instructions to blame. Hence, they need to re-write their instructions and repeat until the blindfolded person finds the hidden item. |
| 10 min | For discussion:
- How good your directions were to guide the blindfolded member? Did you have to correct any of the directions you gave? Why?
- How do you think boats navigate their way in the sea without using technology?
Imagine ways to help sailors navigate in the oceans when they are unable to see land. Hint: Learners can be prompted to look out into the sky and imagine the north star (the brightest star in the sky) and the direction that the sun rises (east) and sets (west).
Tip: If learners have access to a compass, the parent can mention how helpful it can be for navigating in the sea. |
| | Reflection questions:
What did you like the most about this project?
Using what you have learned in this project, what floor maps would you like to draw? (probing: playground, your school, another house, ...etc)
If you were the architect to design this house, what would you change while keeping the same total area of the house? |
| | Assessment Criteria:
- Worksheet questions are answered correctly using methods and skills introduced in earlier activities |

EAA welcomes feedback on its projects in order to improve, please use this link:
https://forms.gle/LGAP9k17fMyJrKJN7
| Learning outcomes: | - Practice scale drawing using simple conversions
- Practice multiplication and applying it on areas of rectangles
- Practice divisions and apply it on word problems
- Apply mathematical knowledge and skills in a real life scenario |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Required previous learning:</td>
<td>- Multiplication and division of decimal numbers</td>
</tr>
<tr>
<td>Inspiration:</td>
<td></td>
</tr>
<tr>
<td>Additional enrichment activities:</td>
<td>- Draw the floor map of another space (School, playground...), and calculate how many tiles and liters of paint it requires.</td>
</tr>
<tr>
<td>Modifications to simplify the project tasks if need be</td>
<td>- Simpler version of this project can be to learn how to sketch floor maps of a rectangular space using simple conversion of Foot to Digit, and then using the sketches to calculate Areas and Perimeters.</td>
</tr>
</tbody>
</table>

Day 1 Worksheet

Answer the below questions **without using a calculator**

5. Draw a floor map of a room whose Length is 14 Feet, and Width is 12 Feet, using the scale 2 Foot is represented by 1 Digit

Then find the area of this room in Squared Feet.

EAA welcomes feedback on its projects in order to improve, please use this link:

https://forms.gle/LGAP9k17fMyJrKJN7
6. A rectangle has an area of 20 Squared Feet. Its Length is 5 Feet. What is its width?
Hint: use the formula $A = L \times W$,
$20 = 5 \times ?$

7. A rectangle has an area of 35 m². One of its sides measures 5 m, can you find the measure of the other side?

8. Find the Area and Perimeter of the shape in the sketch below. Each unit on the sketch represents 1 meter. All lines intersect at 90 degree angles. (The shape is not drawn to scale, so don’t use measurements to identify missing lengths, but calculate them using opposite side lengths).

9. On a drawing of scale 1 :1000, the area of a rectangular piece of land if 15 cm². What is the actual area of this land in m²?
Day 3 Worksheet

Answer the below questions without using a calculator

4. A rectangular room is 12m by 7m. How many square tiles of side 0.5 m are required to cover the floor?

5. a. The perimeter of a rectangular hall is 36 m. Its Width is 6 m, what is its Length?

b. How many square tiles of side 0.3 m are required to cover the floor of the room?

c. What will be the cost of the tiles if they are for $4.5 per m\(^2\) ?

6. A square room has an internal perimeter of 26 m. Find out how many square tiles of side 0.25 m are required for its floor, and the cost if you were to use tiles sold at $5 per m\(^2\) ? (Hint: first identify the side length, then the area of the room, and last calculate the number of tiles).